Многомировая интерпретация

Многомировая интерпретация
 Просмотр этого шаблона  Квантовая механика
\Delta x\cdot\Delta p_x \geqslant \frac{\hbar}{2}
Принцип неопределённости
Введение
Математические основы
См. также: Портал:Физика

Многомирова́я интерпрета́ция (англ. Many-worlds interpretation) — это интерпретация квантовой механики, которая предполагает существование, в некотором смысле, «параллельных вселенных», в каждой из которых действуют одни и те же законы природы и которым свойственны одни и те же мировые постоянные, но которые находятся в различных состояниях. В действительности, термин «многомировая» только вводит в заблуждение; многомировая интерпретация не предполагает реального наличия именно других миров, она предлагает лишь один реально существующий мир, который описывается единой волновой функцией, которую, однако, для завершения процесса измерения какого-либо квантового события, необходимо разделить на наблюдателя (который проводит измерение) и объект, описываемых каждый своей волновой функцией. Однако сделать это можно по-разному, а потому в результате получаются разные значения измеряемой величины и, что характерно, разные наблюдатели. Поэтому считается, что при каждом акте измерения квантового объекта, наблюдатель как бы расщепляется на несколько (предположительно, бесконечно много) версий. Каждая из этих версий видит свой результат измерения и, действуя в соответствии с ним, формирует собственную предшествующую измерению историю и версию Вселенной. С учетом этого данную интерпретацию как правило и называют многомировой, а саму многовариантную Вселенную — Мультиверсом[1].

Однако нельзя представлять «расщепление» наблюдателя как разделение одной Вселенной на множество отдельных миров. Квантовый мир, согласно многомировой интерпретации — ровно один, но огромное множество частиц в нём заменено сложнейшей мировой функцией, и изнутри описан этот мир может быть бесчисленным множеством различных способов, причём это не приводит к неопределённостям, потому как вселенную никто не может наблюдать (описывать) извне[1].

Многомировая интерпретация (далее ММИ) отказывается от недетерминированного коллапса волновой функции, который сопутствует измерению в копенгагенской интерпретации. Многомировая интерпретация обходится в своих объяснениях только явлением квантовой сцепленности и совершенно обратимой эволюцией состояний.

Содержание

Очерк

Хотя со времени выхода оригинальной работы Эверетта уже было предложено несколько новых версий ММИ, всем им свойственно два основных момента. Первый состоит в существовании функции состояния для всей Вселенной, которая всё время подчиняется уравнению Шрёдингера и которая никогда не испытывает недетерминированного коллапса. Второй момент состоит в предположении, что это вселенское состояние является квантовой суперпозицией нескольких (а возможно, и бесконечного числа) состояний одинаковых невзаимодействующих между собой параллельных вселенных.

Идеи ММИ берут начало в диссертации Хью Эверетта из Принстона, написанной под руководством Джона Уилера, а сам термин «многомировая» обязан своим существованием Брайсу Девитту, который развил тему оригинальной работы Эверетта. Формулировка Девитта стала настолько популярной, что её часто путают с исходной работой Эверетта.

ММИ является одной из многих многомировых гипотез в физике и философии. На сегодняшний день она является одной из ведущих интерпретаций, наряду с копенгагенской интерпретацией и интерпретацией согласованных хронологий.

Много миров и проблема интерпретации

Как и другие интерпретации, многомировая призвана объяснить традиционный двухщелевой эксперимент. Когда кванты света (или другие частицы) проходят через две щели, то, чтобы рассчитать, куда они попадут, требуется предположить, что свет обладает волновыми свойствами. Хотя в то же время, если кванты регистрируются, то они всегда регистрируются в виде точечных частиц, а не в виде размытых волн. Чтобы объяснить переход от волнового поведения к корпускулярному, копенгагенская интерпретация вводит процесс так называемого коллапса.

К тому моменту, как Фон Нейман написал в 1932 г. свой знаменитый трактат Mathematische Grundlagen der Quantenmechanik, явление «коллапса волновой функции» было встроено в математический аппарат квантовой механики в виде постулата, что существуют два процесса, при которых волновая функция изменяется:

  1. Скачкообразное случайное изменение, вызываемое наблюдением и измерением
  2. Детерминированная эволюция со временем, подчиняющаяся уравнению Шрёдингера

Многие признавали, что явление коллапса волновой функции, предложенного копенгагенской интерпретацией для (1), является искусственным трюком и, следовательно, необходимо искать другую интерпретацию, в которой поведение при измерении трактуется с помощью более основополагающих физических принципов.

Докторская работа Эверетта как раз и предлагала подобную альтернативу. Эверетт предложил считать, что для составной системы (каковой является частица, взаимодействующая с измерительным прибором) утверждение о том, что какая-либо подсистема находится в определённом состоянии, является бессмысленным. Это привело Эверетта к заключению об относительном характере состояния одной системы по отношению к другой.

Формулировка Эверетта, приводящая к пониманию процесса коллапса волновой функции, происходящего при измерении, математически эквивалентна квантовой суперпозиции волновых функций. Поскольку Эверетт прекратил заниматься теоретической физикой вскоре после получения степени, дальнейшее развитие его идей проводили другие исследователи, из числа которых можно выделить Брайса Девитта.

Краткий обзор

В формулировке Эверетта, измерительный прибор M и объект измерения S образуют составную систему, каждая из подсистем которой до измерения существует в определённых (зависящих, конечно, от времени) состояниях. Измерение рассматривается как процесс взаимодействия между M и S. После того, как между M и S произошло взаимодействие, более нет возможности описывать каждую из подсистем при помощи независимых состояний. Согласно Эверетту, любые возможные описания должны быть относительными состояниями: например, состояние M относительно заданного состояния S или состояние S относительно заданного состояния M.

В формулировке Девитта, состояние S после измерения есть квантовая суперпозиция альтернативных историй S.

Схематическое представление пары "наименее возможных" квантово-механических систем перед взаимодействием: измеряемая система S и измерительный аппарат M. Система S рассматривается как 1-кубитовая система.

Давайте рассмотрим самую простую возможную квантовую систему S — как показано на картинке. Эта картинка описывает, например, спиновое состояние электрона. Выберем определённую ось (например, ось z) и предположим, что северный полюс обозначает спин «вверх», а южный полюс — спин «вниз». Все возможные суперпозиции состояний описываются так называемой сферой Блоха (её поверхностью). Чтобы провести измерения над S, её надо привести во взаимодействие с другой аналогичной системой — M. После взаимодействия составная система описывается состоянием, существующем в шестимерном пространстве (причина того, что измерений шесть, объясняется в статье про сферу Блоха). Этот шестимерный объект можно представить в виде суперпозиции двух «альтернативных историй» системы S, в одной из которых наблюдался результат измерения «вверх», а в другой — «вниз». Каждое последующее двоичное измерение (каковым является взаимодействие с системой M) вызывает аналогичное разветвление исторического дерева. Таким образом, после трёх измерений систему можно рассматривать как квантовую суперпозицию 2х2х2 = 8 копий исходной системы S.

Научность интерпретации

В случае представления многомировой интерпретации как хаотической инфляции Вселенной (которая при измерении делится на множество невзаимодействующих миров и гипотетически часть из них может сильно отличаться от остальных), такую многомировую интерпретацию нельзя в полной мере считать научной, поскольку она не соответствует критерию Поппера[2].

При этом польза такой интерпретации определённо имеется, но может обсуждаться лишь сквозь призму её прагматического использования. Так, например, анализ некоторых вопросов в интерпретации хаотической инфляции миров, хотя и приводит к тем же результатам, что и в любой другой интерпретации квантовой механики, но является более простым с логической точки зрения — что и объясняет её популярность в некоторых областях науки (к примеру, в квантовой космологии).

Чтобы не путать такую интерпретацию Мультивселенной с многовариантной Вселенной, состоящей из единственного мира но описываемого различными способами, некоторые физики предлагают называть последнюю Альтерверсом (В противоположность Мультиверсу — множеству независимых миров, образующихся в моделях хаотической инфляции).

См.также

Примечания

  1. 1 2 Веер параллельных вселенных | Журнал | Вокруг Света
  2. John F. Hawley Chapter 16. Questions  (англ.). Foundations of Modern Cosmology (1998). Архивировано из первоисточника 8 октября 2012. Проверено 8 октября 2012.

Ссылки




Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "Многомировая интерпретация" в других словарях:

  • Интерпретация Эверетта — Многомировая интерпретация (ММИ, MWI) это интерпретация квантовой механики, которая предполагает существование «параллельных вселенных», в каждой из которых действуют одни и те же законы природы и которым свойственны одни и те же мировые… …   Википедия

  • Интерпретация квантовой механики Эверетта — Многомировая интерпретация (ММИ, MWI) это интерпретация квантовой механики, которая предполагает существование «параллельных вселенных», в каждой из которых действуют одни и те же законы природы и которым свойственны одни и те же мировые… …   Википедия

  • Интерпретация множественности миров — Многомировая интерпретация (ММИ, MWI) это интерпретация квантовой механики, которая предполагает существование «параллельных вселенных», в каждой из которых действуют одни и те же законы природы и которым свойственны одни и те же мировые… …   Википедия

  • Интерпретация квантовой механики —     Квантовая механика …   Википедия

  • интерпретация научной теории —         ИНТЕРПРЕТАЦИЯ НАУЧНОЙ ТЕОРИИ. Под И. н. т. имеется в виду операция, которая приписывает значения элементам формализма. В связи с разработкой гипотетико дедуктивного подхода к научной теории возникли понятия «эмпирической И. н. т. » и… …   Энциклопедия эпистемологии и философии науки

  • Квантовая интерпретация Эверетта — Многомировая интерпретация (ММИ, MWI) это интерпретация квантовой механики, которая предполагает существование «параллельных вселенных», в каждой из которых действуют одни и те же законы природы и которым свойственны одни и те же мировые… …   Википедия

  • Копенгагенская интерпретация —     Квантовая механика …   Википедия

  • Квантовая запутанность —     Квантовая механика …   Википедия

  • Квантовое бессмертие — Квантовое бессмертие  мысленный эксперимент, вытекающий из мысленного эксперимента с квантовым самоубийством и утверждающий, что согласно многомировой интерпретации квантовой механики существа, имеющие способность к самосознанию, бессмертны …   Википедия

  • Парадокс Эйнштейна — Подольского — Розена — Парадокс Эйнштейна  Подольского  Розена (ЭПР парадокс)  попытка указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, не оказывая на этот… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»