Принцип неопределенности

Принцип неопределенности
Квантовая механика
\Delta x\cdot\Delta p \geqslant \frac{\hbar}{2}
Принцип неопределённости
Введение ...

Математическая формулировка ...


Принцип неопределённости Гейзенбе́рга (или Га́йзенберга) — в квантовой механике так называют принцип, дающий нижний (ненулевой) предел для произведения дисперсий величин, характеризующих состояние системы.

Обычно принцип неопределённости иллюстрируется следующим образом. Рассмотрим ансамбль невзаимодействующих эквивалентных частиц, приготовленных в определённом состоянии, для каждой из которых измеряется либо координата q, либо импульс p. При этом результаты измерений будут случайными величинами, дисперсии которых будут удовлетворять соотношению неопределённостей d_q d_p \geqslant \frac{\hbar}{2}. Отметим, что, хотя нас интересуют одновременные значения координаты и импульса в данном квантовом состоянии, измерять их у одной и той же частицы нельзя, так как любое измерение изменит её состояние.

В общем смысле, соотношение неопределённости возникает между любыми переменными состояния, определяемыми некоммутирующими операторами. Это — один из краеугольных камней квантовой механики, который был открыт Вернером Гейзенбергом в 1927 г.

Содержание

Краткий обзор

Принцип неопределённости в квантовой механике иногда объясняется таким образом, что измерение координаты обязательно влияет на импульс частицы. По-видимому, сам Гейзенберг предложил это объяснение, по крайней мере первоначально. То, что влияние измерения на импульс несущественно, может быть показано следующим образом: рассмотрим ансамбль (невзаимодействующих) частиц, приготовленных в одном и том же состоянии; для каждой частицы в ансамбле мы измеряем либо импульс, либо координату, но не обе величины. В результате измерения мы получим, что значения распределены с некоторой вероятностью, и для дисперсий dp и dq верно отношение неопределённости.

Отношения неопределённости Гейзенберга — это теоретический предел точности любых измерений. Они справедливы для так называемых идеальных измерений, иногда называемых измерениями фон Неймана. Они тем более справедливы для неидеальных измерений или измерений Ландау.

Соответственно, любая частица (в общем смысле, например несущая дискретный электрический заряд) не может быть описана одновременно как «классическая точечная частица» и как волна. (Сам факт того, что какое-либо из этих описаний может быть справедливо, по крайней мере в отдельных случаях, называют корпускулярно-волновым дуализмом). Принцип неопределённости, в виде, первоначально предложенном Гейзенбергом, верен в случае, когда ни одно из этих двух описаний не является полностью и исключительно подходящим, например частица в коробке с определённым значением энергии; то есть для систем, которые не характеризуются ни каким-либо определённым «положением» (какое-либо определённое значение расстояния от потенциальной стенки), ни определённым значением импульса (включая его направление).

Существует точная, количественная аналогия между отношениями неопределённости Гейзенберга и свойствами волн или сигналов. Рассмотрим переменный во времени сигнал, например звуковую волну. Бессмысленно говорить о частотном спектре сигнала в какой-либо момент времени. Для точного определения частоты необходимо наблюдать за сигналом в течение некоторого времени, таким образом теряя точность определения времени. Другими словами, звук не может иметь и точного значения времени, как например короткий импульс, и точного значения частоты, как, например, в непрерывном чистом тоне. Временно́е положение и частота волны во времени походят на координату и импульс частицы в пространстве.

Определение

Если приготовлены несколько идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определённому распределению вероятности — это фундаментальный постулат квантовой механики. Измеряя величину стандартного отклонения Δx координаты и стандартного отклонения Δp импульса, мы найдем что:

 \Delta x \Delta p \geqslant \frac{\hbar}{2} ,

где \hbar — постоянная Дирака. В некоторых случаях «неопределённость» переменной определяется как наименьшая ширина диапазона, который содержит 50 % значений, что, в случае нормального распределения переменных, приводит для произведения неопределённостей к большей нижней границе \hbar. Отметьте, что это неравенство даёт несколько возможностей — состояние может быть таким, что x может быть измерен с высокой точностью, но тогда p будет известен только приблизительно, или наоборот p может быть определён точно, в то время как x — нет. Во всех же других состояниях, и x и p могут быть измерены с «разумной» (но не произвольно высокой) точностью.

В повседневной жизни мы обычно не наблюдаем неопределённость потому, что значение \hbar чрезвычайно мало.

Другие характеристики

Было развито множество дополнительных характеристик, включая описанные ниже:

Выражение конечного доступного количества информации Фишера

Принцип неопределённости альтернативно выводится как выражение неравенства Крамера — Рао в классической теории измерений. В случае когда измеряется положение частицы. Средне-квадратичный импульс частицы входит в неравенство как информация Фишера. См. также полная физическая информация.

Обобщённый принцип неопределённости

Принцип неопределённости не относится только к координате и импульсу. В своей общей форме, он применим к каждой паре сопряжённых переменных. В общем случае, и в отличие от случая координаты и импульса, обсуждённого выше, нижняя граница произведения неопределённостей двух сопряжённых переменных зависит от состояния системы. Принцип неопределённости становится тогда теоремой в теории операторов, которую мы здесь приведем

Теорема. Для любых самосопряжённых операторов: A\colon H \to H и B\colon H \to H, и любого элемента x из H такого, что ABx и BAx оба определены (то есть, в частности, Ax и Bx также определены), имеем:

 \langle x|AB|x \rangle \langle x|BA|x \rangle = \left|\langle Bx|Ax\rangle\right|^2 \leqslant \left|\langle Ax|Ax\rangle\right|^2 \left|\langle Bx|Bx\rangle\right|^2 = \|Ax\|^2\|Bx\|^2

Это прямое следствие неравенства Коши — Буняковского.

Следовательно, верна следующая общая форма принципа неопределённости, впервые выведенная в 1930 г. Говардом Перси Робертсоном и (независимо) Эрвином Шрёдингером:

 \frac{1}{4} |\langle x|AB-BA|x \rangle|^2 \leqslant \|Ax\|^2\|Bx\|^2.

Это неравенство называют соотношением Робертсона — Шрёдингера.

Оператор ABBA называют коммутатором A и B и обозначают как [A,B]. Он определен для тех x, для которых определены оба ABx и BAx.

Из соотношения Робертсона — Шрёдингера немедленно следует соотношение неопределённости Гейзенберга:

Предположим, A и B — две физические величины, которые связаны с самосопряжёнными операторами. Если ABψ и BAψ определены, тогда:

 \Delta_{\psi}A\,\Delta_{\psi}B \geqslant \frac{1}{2}\left|\left\langle\left[A,{B}\right]\right\rangle_\psi\right|,

где:

\left\langle X\right\rangle_\psi = \left\langle\psi|X|\psi\right\rangle

— среднее значение оператора величины X в состоянии ψ системы, и

\Delta_{\psi}X = \sqrt{\langle{X}^2\rangle_\psi-\langle{X}\rangle_\psi^2}

— оператор стандартного отклонения величины X в состоянии ψ системы.

Приведённые выше определения среднего и стандартного отклонения формально определены исключительно в терминах теории операторов. Утверждение становится однако более значащим, как только мы заметим, что они являются фактически средним и стандартным отклонением измеренного распределения значений. См. квантовая статистическая механика.

То же самое может быть сделано не только для пары сопряжённых операторов (например координаты и импульса, или продолжительности и энергии), но вообще для любой пары Эрмитовых операторов. Существует отношение неопределённости между напряжённостью поля и числом частиц, которое приводит к явлению виртуальных частиц.

Возможно также существование двух некоммутирующих самосопряжённых операторов A и B, которые имеют один и тот же собственный вектор ψ. В этом случае ψ представляет собой чистое состояние, которое является одновременно измеримым для A и B.

Общие наблюдаемые переменные, которые повинуются принципу неопределённости

Предыдущие математические результаты показывают, как найти отношения неопределённости между физическими переменными, а именно, определить значения пар переменных A и B, коммутатор которых имеет определённые аналитические свойства.

  • самое известное отношение неопределённости — между координатой и импульсом частицы в пространстве:
 \Delta x_i \Delta p_i \geqslant \frac{\hbar}{2}
 \Delta J_i \Delta J_j \geqslant \frac {\hbar} {2} \left |\left\langle J_k\right\rangle\right |
где i, j, k различны и Ji обозначает угловой момент вдоль оси xi.
  • следующее отношение неопределённости между энергией и временем часто представляется в учебниках физики, хотя его интерпретация требует осторожности, так как не существует оператора, представляющего время:
 \Delta E \Delta t \geqslant \frac{\hbar}{2}
  • Следует подчеркнуть, что для выполнения условий теоремы, необходимо, чтобы оба самосопряженных оператора были определены на одном и том же множестве функций. Примером пары операторов, для которых это условие нарушается, может служить оператор проекции углового момента Lz и оператор азимутального угла \varphi. Первый из них является самосопряженным только на множестве 2π-периодичных функций, в то время как оператор \varphi, очевидно, выводит из этого множества. Для решения возникшей проблемы можно вместо \varphi взять \sin \varphi, что приведет к следующей форме принципа неопределенности[1]:
 \langle (\Delta L_z)^2 \rangle \langle (\Delta \sin \varphi)^2 \rangle \geqslant \frac{\hbar^2}{4} \langle (\cos \varphi)^2 \rangle .
Однако, при \langle (\varphi)^2 \rangle \ll \pi^2 условие периодичности несущественно и принцип неопределенности принимает привычный вид:
 \langle (\Delta L_z)^2 \rangle \langle (\Delta \varphi)^2 \rangle \geqslant \frac{\hbar^2}{4}.

Интерпретации

Альберту Эйнштейну принцип неопределённости не очень понравился, и он бросил вызов Нильсу Бору и Вернеру Гейзенбергу известным мысленным экспериментом (См. дебаты Бор-Эйнштейн для подробной информации): заполним коробку радиоактивным материалом, который испускает радиацию случайным образом. Коробка имеет открытый затвор, который немедленно после заполнения закрывается при помощи часов в определённый момент времени, позволяя уйти небольшому количеству радиации. Таким образом время уже точно известно. Мы все ещё хотим точно измерить сопряжённую переменную энергии. Эйнштейн предложил сделать это, взвешивая коробку до и после. Эквивалентность между массой и энергией по специальной теории относительности позволит точно определить, сколько энергии осталось в коробке. Бор возразил следующим образом: если энергия уйдет, тогда полегчавшая коробка сдвинется немного на весах. Это изменит положение часов. Таким образом часы отклоняются от нашей неподвижной системы отсчёта, и по специальной теории относительности, их измерение времени будет отличаться от нашего, приводя к некоторому неизбежному значению ошибки. Детальный анализ показывает, что неточность правильно дается соотношением Гейзенберга.

В пределах широко, но не универсально принятой Копенгагенской интерпретации квантовой механики, принцип неопределённости принят на элементарном уровне. Физическая вселенная существует не в детерминистичной форме, а скорее как набор вероятностей, или возможностей. Например, картина (распределение вероятности) произведённая миллионами фотонов, дифрагирующими через щель может быть вычислена при помощи квантовой механики, но точный путь каждого фотона не может быть предсказан никаким известным методом. Копенгагенская интерпретация считает, что это не может быть предсказано вообще никаким методом.

Именно эту интерпретацию Эйнштейн подвергал сомнению, когда писал Максу Борну: «я уверен, что Бог не бросает кости» (Die Theorie liefert viel. Aber ich bin überzeugt, dass der Alte nicht würfelt)[2]. Нильс Бор, который был одним из авторов Копенгагенской интерпретации, ответил: «Эйнштейн, не говорите Богу, что делать».

Эйнштейн был убеждён, что эта интерпретация была ошибочной. Его рассуждение основывалось на том, что все уже известные распределения вероятности являлись результатом детерминированных событий. Распределение подбрасываемой монеты или катящейся кости может быть описано распределением вероятности (50 % орёл, 50 % решка). Но это не означает, что их физические движения непредсказуемы. Обычная механика может вычислить точно, как каждая монета приземлится, если силы, действующие на неё будут известны, а орлы/решки будут все ещё распределяться случайно (при случайных начальных силах).

Эйнштейн предполагал, что существуют скрытые переменные в квантовой механике, которые лежат в основе наблюдаемых вероятностей.

Ни Эйнштейн, ни кто-либо ещё с тех пор не смог построить удовлетворительную теорию скрытых переменных, и неравенство Белла иллюстрирует некоторые очень тернистые пути в попытке сделать это. Хотя поведение индивидуальной частицы случайно, оно также скоррелировано с поведением других частиц. Поэтому, если принцип неопределённости — результат некоторого детерминированного процесса, то получается, что частицы на больших расстояниях должны немедленно передавать информацию друг другу, чтобы гарантировать корреляции в своём поведении.

Принцип неопределённости в популярной культуре

Принцип неопределённости часто неправильно понимается или приводится в популярной прессе. Одна частая неправильная формулировка в том, что наблюдение события изменяет само событие. Вообще говоря, это не имеет отношения к принципу неопределённости. Почти любой линейный оператор изменяет вектор, на котором он действует (то есть почти любое наблюдение изменяет состояние), но для коммутативных операторов никаких ограничений на возможный разброс значений нет (см. выше). Например, проекции импульса на оси c и y можно измерить вместе сколь угодно точно, хотя каждое измерение изменяет состояние системы. Кроме того, в принципе неопределённости речь идёт о параллельном измерении величин для нескольких систем, находящихся в одном состоянии, а не о последовательных взаимодействиях с одной и той же системой.

Другие (также вводящие в заблуждение) аналогии с макроскопическими эффектами были предложены для объяснения принципа неопределённости: одна из них рассматривает придавливание арбузной семечки пальцем. Эффект известен — нельзя предсказать, как быстро или куда семечка исчезнет. Этот случайный результат базируется полностью на хаотичности, которую можно объяснить в простых классических терминах.

В некоторых научно-фантастических рассказах устройство для преодоления принципа неопределённости называют компенсатором Гейзенберга, наиболее известное используется на звездолёте «Энтерпрайз» из фантастического телесериала Звёздный Путь в телепортаторе. Однако, неизвестно, что означает «преодоление принципа неопределённости». На одной из пресс-конференций продюсера сериала спросили «Как работает компенсатор Гейзенберга?», на что он ответил «Спасибо, хорошо!»

Научный юмор

Необычная природа принципа неопределённости Гейзенберга и его запоминающееся название, сделали его источником нескольких шуток. Говорят, что популярной надписью на стенах физического факультета университетских городков является: «Здесь, возможно, был Гейзенберг».

В другой шутке о принципе неопределённости, квантового физика останавливает на шоссе полицейский и спрашивает: «Вы знаете, как быстро Вы ехали, сэр?». На что физик отвечает: «Нет, но я точно знаю, где я!»

Литература

Использованная литература

  1. А. С. Давыдов Квантовая механика, 2-ое изд., — М.: Наука, 1973.
  2. Письмо Максу Борну от 12 декабря 1926 г, цит. Einstein, The Life and Times ISBN 0-380-44123-3

Журнальные статьи

О соотношения неопределенностей Шредингера

Внешние ссылки

См. также


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "Принцип неопределенности" в других словарях:

  • ПРИНЦИП НЕОПРЕДЕЛЕННОСТИ — ПРИНЦИП НЕОПРЕДЕЛЕННОСТИ, физический закон, который утверждает, что нельзя одновременно точно измерить координаты и импульс микроскопического объекта, т.к. процесс измерения нарушает равновесие системы. Произведение этих двух неопределенностей… …   Научно-технический энциклопедический словарь

  • Принцип неопределенности Гейзенберга — Квантовая механика Принцип неопределённости Введение ... Математическая формулировка ... Основа …   Википедия

  • Принцип неопределённости Гейзенберга — Квантовая механика Принцип неопределённости Гейзенберга Введение Математические основы …   Википедия

  • Принцип неопределённости —     Квантовая механика …   Википедия

  • Принцип Предосторожности —  Принцип Предосторожности  ♦ Precaution, Principe de    Принимать предосторожность значит действовать так, чтобы избежать зла или того, что человек полагает злом. Предосторожность – прикладное благоразумие перед лицом реальной или предполагаемой… …   Философский словарь Спонвиля

  • НЕОПРЕДЕЛЕННОСТИ ПРИНЦИП — фундаментальное положение квантовой теории, утверждающее, что характеризующие физическую систему т. н. дополнительные физические величины (напр., координата и импульс) не могут одновременно принимать точные значения; отражает двойственную,… …   Большой Энциклопедический словарь

  • НЕОПРЕДЕЛЕННОСТИ ПРИНЦИП — принцип Гейзенберга, один из важнейших принципов квантовой механики, утверждающий, что дисперсии значений двух физич. величин аи b, описываемых не коммутирующими операторами и , коммутатор к рых отделен от нуля, в любом состоянии физич. системы… …   Математическая энциклопедия

  • НЕОПРЕДЕЛЕННОСТИ ПРИНЦИП — один из основных принципов квантовой механики как одной из парадигмальных теорий неклассической науки. Согласно обобщенному его пониманию, для ряда сопряженных параметров, характеризующих состояние любой физической системы (например, се… …   Философия науки: Словарь основных терминов

  • неопределённости принцип — фундаментальное положение квантовой теории, утверждающее, что характеризующие физическую систему так называемой дополнительной физической величины (например, координата и импульс) не могут одновременно принимать точные значения; отражает… …   Энциклопедический словарь

  • Неопределённости принцип — Неопределенности принцип НЕОПРЕДЕЛЁННОСТИ ПРИНЦИП, фундаментальное положение квантовой теории, утверждающее, что характеризующие физическую систему так называемые  дополнительные физические величины (например, координата и импульс) не могут… …   Иллюстрированный энциклопедический словарь


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»