Введение в квантовую механику

Введение в квантовую механику

Введение в квантовую механику

Содержание

Вероятность

Квантовая (волновая) механика пытается объяснять как корпускулярные, так и волновые свойства вещества (см. Корпускулярно-волновой дуализм). Волна любой природы полностью описывается её амплитудой и фазой, поэтому квантовая механика должна использовать именно такое описание. Функция волнового процесса представляет собой суперпозицию комплексных экспонент, взятых с определёнными весами (амплитудами). Отсюда описание системы (вообще любой, но актуально только микроразмерной) комплексной волновой функцией, амплитуда и фаза которой полностью определяют состояние такой системы.

Это описание позволяет естественным образом описывать волновые явления, такие, как интерференцию элементарных частиц или, скажем, дифракцию электронов на кристаллической решетке.

Вероятность обнаружить частицу в некотором состоянии равна квадрату модуля волновой функции, что следует из вещественности величины вероятности. (Формально это легко понять: такая вероятность не должна зависеть от фазы волнового процесса в данной точке и быть вещественной, поэтому может содержать волновую функцию только в комбинации ψ*ψ=|ψ|²)

Одно из отличий квантовой механики от обычной заключается в том, что вероятность обнаружить электрон в данном месте ещё не полностью определяет его состояние. Для описания состояния электрона используется комплексная вероятность. Волновая функция и есть значение этой комплексной вероятности. Плотность вероятности обнаружения электрона в данной точке равна квадрату модуля комплексной вероятности. Комплексность приводит к эффекту интерференции: если комплексная вероятность электрона оказаться в точке A после прохождения через одну щель равна p, а комплексная вероятность электрона оказаться в точке A после прохождения через вторую щель равна -p, то если разрешить электрону проходить через обе щели эта вероятность станет равна 0 — то есть в этой точке электрон оказаться не может. Обратите внимание, что вероятность ограниченного в возможностях электрона выражается ограниченным количеством волновых функций. В частности прохождение электрона через единственное отверстие достаточно малого радиуса описывается функцией аналогичной функции распространения точечного источника волны.

Практически интерференция наблюдалась для фотонов, электронов и некоторых атомов.

Соотношение неопределённостей

Другим необычным свойством электронного «облака» является его неподатливость. Если мы со всех сторон начнём сдавливать это облако, стремясь уменьшить его размеры, то оно станет оказывать всё большее и большее давление. Т. е попытка ограничить размеры вероятного положения электрона приводит в пределе к бесконечному сопротивлению. Можно представить себе этот процесс, словно электрон начинает метаться по облачку, и чем меньше его размеры, тем сильнее он мечется, т. е. тем больше его кинетическая энергия. Однако отметьте, что такие представления в квантовой физике не могут быть чем-то большим, чем попыткой изобразить процесс. При экспериментах полной аналогии не наблюдается. Оно и понятно: квантовые частицы - не частицы и не волны, а что-то третье.

Мы приходим к выводу: если мы пытаемся насильно избавить электрон от неопределённости в координате (придать ему чисто корпускулярные свойства), то мы неизбежно увеличиваем неопределённость в импульсе электрона (то есть стремимся сделать его чистой волной). Оказывается, произведение этих двух неопределённостей никогда не бывает меньше конкретной величины, постоянной Планка. Это соотношение называется соотношением неопределённостей. Аналогичные соотношения неопределённостей связывают и некоторые другие характеристики микрочастицы. Такие характеристики частицы называются дополнительными друг к другу.

Общее словесное описание этого закона таково:

создавая всё большую определённость в какой-либо одной характеристике частицы, природа уменьшает определённость в дополнительной ей характеристике.

Важно понимать, что такое «квантовое дрожание» (обычно говорят нулевые колебания) локализованной микроскопической частицы неустранимо, и именно оно приводит к некоторым чисто квантовым явлениям. Например, даже при нулевой температуре, когда, согласно классической механике, никакого движения не должно быть, нулевые колебания по-прежнему остаются. Именно из-за этого жидкий гелий не затвердевает при нормальном давлении даже при нулевой температуре по Кельвину.

Наблюдение микрочастиц

Предыдущее свойство сразу же меняет понятие наблюдения за микрочастицей. Действительно, наблюдение — это процесс взаимодействия объекта с прибором, в результате которого на выходе прибора появляется какой-то определённый сигнал. Но всякое взаимодействие, а значит, и просто наблюдение, самим фактом своего существования принципиально меняет свойства наблюдаемого объекта. И важно, что это возмущение нельзя сделать пренебрежимо малым — важен сам факт возмущения.

Итак, при измерении какого-либо свойства частицы, и даже просто при её наблюдении, исходное состояние частицы, как правило, разрушается. Можно сказать, что какое-либо определённое квантовое состояние частицы — невероятно «хрупкая» вещь. Это важное свойство используется в квантовой телепортации и квантовой криптографии.

Квантование

Следующим важным свойством микрочастицы является тот факт, что она не всегда может находиться в произвольном состоянии. В частности, если она удерживается какими-либо силами в более-менее локализованном состоянии (то есть «не убегает на бесконечность»), то состояния частицы оказываются квантованными: т. е. частица может обладать только определённым дискретным набором энергий в поле связывающих сил. Это кардинально отличается от классической механики: в ней частица может обладать непрерывным набором энергий. С практической точки зрения, самым важным следствием этого является линейчатый (а не непрерывный) спектр излучения и поглощения атомов. Грубо говоря, это объясняется тем, что «длина волны» пси-функции становится сопоставимой с размерами её конфигурации (то есть насчитывается малое число пиков стоячей волны).


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Полезное


Смотреть что такое "Введение в квантовую механику" в других словарях:

  • Фукуи, Кэнъити — Кэнъити Фукуи 福井 謙一 220 Дата рождения: 4 октября 1918(1918 10 04) Место рождения: город Нара (Япония) …   Википедия

  • Культура Австрии — Культуру на территории сегодняшней Австрии можно проследить начиная с около 1050 г до н. э. с Гальштатской и Латенской культур. Однако, культура Австр …   Википедия

  • Физика —         I. Предмет и структура физики          Ф. – наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, свойства и строение материи и законы её движения. Поэтому понятия Ф. и сё законы лежат в основе всего… …   Большая советская энциклопедия

  • ФИЗИКА. — ФИЗИКА. 1. Предмет и структура физики Ф. наука, изучающая простейшие и вместе с тем наиб. общие свойства и законы движения окружающих нас объектов материального мира. Вследствие этой общности не существует явлений природы, не имеющих физ. свойств …   Физическая энциклопедия

  • Боголюбов, Николай Николаевич — Николай Николаевич Боголюбов Дважды Герой Социалистического Труда Н. Н. Боголюбов Дата рождения: 8 (21) августа …   Википедия

  • Важнейшие открытия в физике — История технологий По периодам и регионам: Неолитическая революция Древние технологии Египта Наука и технологии древней Индии Наука и технологии древнего Китая Технологии Древней Греции Технологии Древнего Рима Технологии исламского мира… …   Википедия

  • Боголюбов Н. Н. — Николай Николаевич Боголюбов Дата рождения: 21 августа 1909 Место рождения: Нижний Новгород Дата смерти: 13 февраля 1992 Место смерти: Москва Гражданство …   Википедия

  • Боголюбов Николай Николаевич — Николай Николаевич Боголюбов Дата рождения: 21 августа 1909 Место рождения: Нижний Новгород Дата смерти: 13 февраля 1992 Место смерти: Москва Гражданство …   Википедия

  • Николай Николаевич Боголюбов — Дата рождения: 21 августа 1909 Место рождения: Нижний Новгород Дата смерти: 13 февраля 1992 Место смерти: Москва Гражданство …   Википедия

  • Формулировка через интегралы по траекториям — ВНИМАНИЕ. Статья не полностью отражает современное состояние вопроса, содержит существенные пробелы и неточности. //7 янв 2010 Квантовая механика Принцип неопределённости Гейзенберга …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»